Mitochondrial Dysfunction Due to Lack of Manganese Superoxide Dismutase Promotes Hepatocarcinogenesis

نویسندگان

  • Anja Konzack
  • Mirza Jakupovic
  • Kateryna Kubaichuk
  • Agnes Görlach
  • Frank Dombrowski
  • Ilkka Miinalainen
  • Raija Sormunen
  • Thomas Kietzmann
چکیده

AIMS One of the cancer hallmarks is mitochondrial dysfunction associated with oxidative stress. Among the first line of defense against oxidative stress is the dismutation of superoxide radicals, which in the mitochondria is carried out by manganese superoxide dismutase (MnSOD). Accordingly, carcinogenesis would be associated with a dysregulation in MnSOD expression. However, the association studies available so far are conflicting, and no direct proof concerning the role of MnSOD as a tumor promoter or suppressor has been provided. Therefore, we investigated the role of MnSOD in carcinogenesis by studying the effect of MnSOD deficiency in cells and in the livers of mice. RESULTS We found that loss of MnSOD in hepatoma cells contributed to their conversion toward a more malignant phenotype, affecting all cellular properties generally associated with metabolic transformation and tumorigenesis. In vivo, hepatocyte-specific MnSOD-deficient mice showed changed organ architecture, increased expression of tumor markers, and a faster response to carcinogenesis. Moreover, deficiency of MnSOD in both the in vitro and in vivo model reduced β-catenin and hypoxia-inducible factor-1α levels. INNOVATION The present study shows for the first time the important correlation between MnSOD presence and the regulation of two major pathways involved in carcinogenesis, the Wnt/β-catenin and hypoxia signaling pathway. CONCLUSION Our study points toward a tumor suppressive role of MnSOD in liver, where the Wnt/β-catenin and hypoxia pathway may be crucial elements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron-mediated inhibition of mitochondrial manganese uptake mediates mitochondrial dysfunction in a mouse model of hemochromatosis.

Previous phenotyping of glucose homeostasis and insulin secretion in a mouse model of hereditary hemochromatosis (Hfe(-/-)) and iron overload suggested mitochondrial dysfunction. Mitochondria from Hfe(-/-) mouse liver exhibited decreased respiratory capacity and increased lipid peroxidation. Although the cytosol contained excess iron, Hfe(-/-) mitochondria contained normal iron but decreased co...

متن کامل

Differential Expression of Mitochondrial Manganese Superoxide Dismutase (SOD) in Triticum aestivum Exposed to Silver Nitrate and Silver Nanoparticles

Background: The increasing use of nanoparticles (NPs) may have negative impacts on both organisms andthe environment. Objectives: The differential expression of mitochondrial manganese superoxide dismutase (MnSOD) gene in wheat in response to silver nitrate nanoparticles (AgNPs) and AgNO3 was investigated. Materials and Methods: A quantita...

متن کامل

Salen Mn Complexes are Superoxide Dismutase/Catalase Mimetics that Protect the Mitochondria

Salen Mn complexes, including EUK-134, EUK-189 and a cyclized analog EUK-207, are synthetic superoxide dismutase (SOD) and catalase mimetics that are beneficial in many models of oxidative stress. Though not designed to target the mitochondria, salen Mn complexes show "mito-protective" activity, that is, an ability to attenuate mitochondrial injury, in various experimental systems. Treatment wi...

متن کامل

The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation and liver injury during acetaminophen hepatotoxicity.

UNLABELLED Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in many countries. The mechanism of cell death is initiated by formation of a reactive metabolite that binds to mitochondrial proteins and promotes mitochondrial dysfunction and oxidant stress. Manganese superoxide dismutase (SOD2) is a critical defense enzyme located in the mitochondrial matrix. Th...

متن کامل

Umor Necrosis Factor Alpha–mediated Nitric Oxide Roduction Enhances Manganese Superoxide Dismutase Itration and Mitochondrial Dysfunction in Primary Eurons: an Insight into the Role of Glial Cells

bstract—Tumor necrosis factor-alpha (TNF), a ubiquitous ro-inflammatory cytokine, is an important mediator in mmune-neuroendocrine system that affects the CNS. T resent study demonstrates that treatment with TNFactiates microglia to increase TNFproduction in primary culures of glial cells isolated from wild-type (WT) mice ice deficient in the inducible form of nitric oxide synt iNOSKO). However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2015